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Abstract. We investigate numerically the percolation probability of the asymmetric directed-
bond percolation on the square lattice with two parametersp and q based on Guttmann and
Enting’s procedure (1996Phys. Rev. Lett.76 344). A series in the form of

∑
n Hn(q) p

n

is derived by using the finite transfer-matrix method. The denominator ofHn(q) is directly
calculated from the determinant of the transfer matrix and it leads to a proof that poles all lies
on the unit circle in the complexq plane. Thesolvability of the bond directed percolation is
also discussed.

1. Introduction

The percolation problem (Broadbent and Hammersley 1957) has been associated with a
wide variety of critical phenomena. Especially directed percolation (DP) (Durrett 1988,
Baxter and Guttmann 1988, Jensen and Guttmann 1995, 1996, Jensen 1996) is a typical
statistical model which is nontranslationally invariant and is closely related to stochastic
cellular automata (Domany and Kinzel 1984, Kinzel 1985) and interacting particles systems
such as the contact process (Harris 1974, Durrett 1988, Konno 1994). Field-theoretical
arguments lead to the fact that the DP and Reggeon field theory belong to the same
universality class (Grassberger and de la Torre 1979, Cardy and Sugar 1980). It is believed
that almost stochastic models with a scalar parameter and a unique absorbing state belong
to DP universality class, and so, the DP is a kind of minimal model for the interacting
particle system (Janssen 1981, Grassberger 1982, Dickman 1993).

No exact solutions in DP models are found, however, although some critical exponents
have been estimated to rather high precision (Jensen and Guttmann 1995, 1996, Jensen
1996). It is well known that critical exponents of many exact solvable statistical models
can be represented as simple fractions. In the case of DP, long series expansions obtained
by Jensen and Guttmann suggest that the critical exponent of percolation probability of DP
is not a simple fraction.

The exact results for the series expansion of DP are very few, but, the following
regularities have been found recently. First, the confluent exponent of DP is very close
to 1 (Jensen and Guttmann 1995, 1996, Jensen 1996). Secondly, the coefficients of the
series are generally given as a finite series of simple combinational numbers (Baxter and
Guttmann 1988, Jensen and Guttmann 1995, 1996, Jensen 1996, Bousquet-Mélou 1996,
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Katori et al 1997, Katori and Inui 1997). These results suggest other hidden regularities
and exact results.

It is probably quite difficult to determine whether DP is solvable or not. To study the
solvability of DP in this paper, we use Guttmann and Enting’s proposal for solvability of a
statistical mechanical system (Guttmann and Enting 1996, Guttmann 1998, Tsukahara and
Inami 1998). They propose a powerful numerical procedure that indicates whether or not a
given system is solvable (in the sense of being expressible in terms ofD-finite functions)
and suggests the possibility of application to the DP problem. In this paper, we analyse the
series expansion of the asymmetric DP percolation probability by using the finite transfer-
matrix method (Bidaux and Forǵacs 1984, ben-Avrahamet al 1991) and show several new
mathematical properties in the series.

2. Transfer-matrix method and series expansion

Consider a down-pointing triangular region in the square lattice with sizek, Vk = {(x, y) ∈
Z2: x + y = even, 0 6 y 6 k,−y 6 x 6 y}. In particular, we call a subset of sites
∈ Vk labelled by the same valuey = k, ‘sites in thekth row’. We assume that each bond
between a site(x, y) and one site(x−1, y+1) (respectively(x+1, y+1)) is vacant with
probabilityp (respectivelyq) and occupied with 1− p (respectively 1− q). Let P k(p, q)
be the probability that the origin is connected to at least one site in thekth row. The bond
percolation probability is defined asP(p, q) ≡ limk→∞ P k(p, q) and it can be represented
as the following polynomial:

P(p, q) =
∞∑

m,n=0

cm,np
mqn =

∞∑
n=0

Hn(q) p
n. (2.1)

A short series expansion of the asymmetric bond DP has already been obtained by Katroi
et al (the list of coefficients is given in Katoriet al (1997)). In the case ofp = q, the
series implies the percolation probability of ordinary DP and long series expansions have
been given by Jensen and Guttmann (Jensen and Guttmann 1995, 1996, Jensen 1996). The
best estimations for critical values and critical exponents of DP are given by these series.

The kernel of Guttmann and Enting’s proposal is in observing poles ofHn(q) and the
shape of the numerator ofHn(q). To study the solvability of DP by Guttman and Enting’s
proposal, we first have to find the procedure for derivingHn(q). We stress that we cannot
obtainHn(q) by only extrapolating a finite-series expansion.

Consider a cluster includings sites in thekth row connected to the origin. If these sites
are disconnected from every site in the(k + 1)th row then at least 2s bonds between the
kth row and the(k + 1)th row are vacant. Therefore the order of the probability of a finite
cluster which is composed ofs sites connected to the origin, with respect topq is not less
thans. It implies thatHn(q) cannot be dependent on the percolation probabilities of clusters
includings(> n) sites in some row. In other words, the maximum distance between sites in
the same row which are located in the finite cluster contributing toHn(q) is not greater than
n. By considering this restriction and translation invariant, we find thatHn(q) is calculated
by the finite transfer-matrix method. A configuration of sites in thekth row is represented
as a list{σ }k = {σ−k, σ−k+2, . . . , σk}k, where if the site(l, k) is connected (disconnected)
to the origin thenσl = 1(0), respectively. We write simply a configuration as an integer
j ≡ ∑n

i=0 σ−n+2i2i . In order to express the propagation of the percolation in a strip with
n sites in width, we introduce a transfer matrixLn(p, q). The transition probability from a
configurationj to j ′ is given by an element in thej ′th row, thej th column ofLn(p, q) (a
detailed definition is given in Bidaux and Forǵacs (1984) and ben-Avrahamet al (1991)).
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For example, the transfer matrixL2(p, q) for the set of configuration{00, 01, 10, 11} is
given by using translation symmetry and equating{10} and{01} as

L2(p, q) =
 1 pq p2q2

0 q(1− p)+ (1− q)p q2(1− p)p + qp(1− qp)
0 (1− q)(1− p) q(1− p)(1− qp)

 . (2.2)

We note that the above matrix is not a stochastic matrix, and so, the summation over
the column of matrix is not always 1. Using the translation symmetry, we write the set of
probabilityP kn,j (p, q) of finding the system in the statej (6 2n) within the strip withn sites
in width asvkn = (P kn,0(p, q), P kn,1(p, q), . . . , P kn,2n (p, q))T where T denotes the transpose.
Then the propagation of cluster is represented asvk+1

n = M · vkn with the initial statev0
n =

(0, 1, . . . ,0, 0)T. Let wn be a vector((pq)s0, . . . , (pq)sj , . . . , (pq)s2n ) defined bysj = the
number of ‘1’ in the statej . By introducingM̂n, ŵn and v̂0

n which are the matrix removed
from the first column and the first row fromMn, and the vector removed from the first
element fromwn andv0

n, respectively, the percolation probability is given by

P(p, q) = 1− ŵn
∞∑
k=0

M̂(k)
n (p, q) v̂0

n +O(n+ 1) (2.3)

whereO(n+ 1) denotes a polynomial which is a linear combination ofpiqj (i + j > 2n)
andM̂0

n is defined as the unit matrix. If the right-hand side of (2.3) converges, it is written
as

P(p, q) = 1− ŵn(I − M̂n(p, q))
−1v̂0

n +O(n+ 1) (2.4)

whereI is the unit matrix and(I − M̂n(p, q))
−1 means the inverse ofI − M̂n(p, q). In the

case ofn = 2, ŵn is given by(pq, (pq)2) andP(p, q) is

P(p, q) = 1− pq(1− q + p)
(1− q)2 +O(3). (2.5)

By a Taylor expansion nearp = 0, we obtain

P(p, q) = 1− q

1− q p +
q

(1− q)2p
2+O(p3). (2.6)

Comparing (2.6) with (2.1), we obtainH1(q) andH2(q) as

H1(q) = − q

1− q (2.7)

H2(q) = q

(1− q)2 . (2.8)

Series expansions of these functions,H1(q) = −1 − q − q2 − q3 − q4 − · · · and
H2(q) = −1 − q − 2q2 − 3q3 − 4q4 − · · · are the same as series expansions given by
Katori et al. For n 6 5, functionsHn(q) obtained in the same way are

H3(q) = −q(1+ q
2)

(1− q)3 (2.9)

H4(q) = q(1+ q + 3q2+ 3q3+ q4)

(1− q)3(1− q2)
(2.10)

H5(q) = −q(1+ 3q + 9q2+ 20q3+ 25q4+ 19q5+ 10q6+ 2q7)

(1− q)2(1− q2)3
. (2.11)

From (2.7) and (2.11), one finds that (i) the numerator and denominator polynomial are
of equal degree and (ii) that all poles lie on the unit circle in the complexq plane.
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These observations are also found in series expansions of the susceptibility of the Ising
model (Guttmann and Enting 1996, Hanselet al 1987), self-avoiding polygon (Conway and
Guttmann 1996) and so on.

Equation (2.4) determiningHn(q) is simple, however, it is difficult to calculate the
inverse matrix for largen. Therefore we try to findHn(q) for 6 6 n 6 8 satisfying the
above observations (i) and (ii) from series expansions up to 51 for eachm 6 8. The
degree of the polynomials is 11, 15, 23 and the denominators ofHn(q) are(1−q)(1−q2)5,
(1− q2)7(1+ q + q2) and(1− q)8(1+ q)9(1+ q + q2)3 for n = 6, 7, 8, respectively. The
coefficients of the numerator are summarized in table 1.

Table 1. Coefficients in the numerator ofHn(q). The indexi denotes the exponent ofq.

i n = 6 n = 7 n = 8

0 0 0 0
1 −1 1 −1
2 −5 8 −12
3 −20 44 −90
4 −63 190 −518
5 −135 621 −2 354
6 −200 1545 −8 564
7 −216 3006 −25 407
8 −168 4637 −62 506
9 −90 5722 −129 237

10 −27 5634 −226 653
11 −4 4400 −339 384
12 2663 −435 452
13 1216 −479 519
14 388 −452 640
15 80 −364 981
16 8 −249 557
17 −143 151
18 −67 691
19 −25 769
20 −7 589
21 −1 633
22 −224
23 −13

3. Distribution of poles in the complex plane

In this section, we prove that all poles lie on the unit circle in the complexq plane. We
represent each element ofvkn, P kn,j (p, q) as the following polynomial ofp:

P kn,j (p, q) =
n−sj∑
m=0

Ckj,m(q) p
m. (3.1)

By substituting this expression intovk+1
n = M̂n · vkn, the coefficient ofpm, Ck+1

j,m (q)

which is a function ofq, is given by a combination of some coefficientsCkj ′,m′(q).
Thus the transition of a vector composed of coefficients ofP kn,j (p, q), ckn ≡
(Ck0,1(q), C

k
0,2(q), . . . , C

k
1,0(q), C

k
2,0(q), . . . , C

k
2n,n−s2n (q))

T can be expressed asck+1
n = M̃nc

k
n
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with c0
n = (1, 0, . . . ,0)T. An advantage of this expression is thatM̃n can always be

represented as a lower triangular matrix by arranging the order inckn. We decide the order of
the elementCkj,m(q) in ckn by following two rules: (i) ifm < m′ then the coefficientCkj,m(q)
is located beforeCkj,m′(q); (ii) if m = m′ andj < j ′ then the coefficientCkj,m(q) is located

beforeCkj ′,m(q). We briefly explain the reason why we can transform̃Mn into a lower

triangular matrix. We can dividẽMn into blocks in which elements determine the transition
of coefficientsCkj,m(q) with the same indexm. Because the exponent ofp in the transfer
matrix Mn is not less than zero, it is impossible to have a transition from the block with
m′ to the block withm(< m′). If j < j ′ then the number of ‘1’ or the maximum distance
between ‘1’ in the statej is less than those of the statej ′. Thus it is impossible to have a
transition from the statej ′ to the statej within the block; that is, the matrix̃Mn must be a
lower triangular matrix. As an example, we show̃M2 for ck2 = (Ck1,0(q), Ck2,0(q), Ck1,1(q))T
which completely determineH2(q),

M̃2(q) =
[

q 0 0
1− q q 0

1− 2q q + q2 q

]
. (3.2)

To calculateHn(q) by using the matrixM̃n we define a new vectorw′n. We assume
that the ith element ofckn is Ckj,m(q). If m + sj = n then theith element ofw′n is qsj

and otherwise is zero. We also define a new matrixAn given by replacing the first row
of I − M̃n by the vectorw′. By applying Cramers’ rules and Laplace’s theorem to (2.4),
Hn(q) is simply expressed as

Hn(q) = |An|
|I − M̃n|

(3.3)

where |An| denotes the determinant of the matrixAn. From (3.3) we find that the poles
of Hn(q) are zero points of|I − M̃n|. BecauseI − M̃n is the lower triangular matrix,
the determinant|I − M̃n| is given by the product of diagonal elements. For example, the
determinants of|I − M̃n| for n = 2, 3, 4 are given by(1− q)3, (1− q)6(1− q2)2 and
(1− q)10(1− q2)10, respectively. Each diagonal element ofM̃n represents the transition
between the same configuration and it is generally expressed asqα whereα is the number
of a pair {1, 0} in the configuration, for example, theα with respect to a configuration
j = 19= {1, 0, 0, 1, 1, 0, . . .} is 2. Consequently, we can generally express|I −Mn| in the
following form:

|I − M̃n| =
dn/2e∏
j=1

(1− qj )κn,j (3.4)

wheredNe denotes the smallest integer not less thanN . From (3.4) we conclude thatall
poles lie on the unit circle in the complex q plane.

We determineκn,j as a function ofn andj . Let an,i,j be the number of configurations
satisfying the following conditions: (i) the number of sites isn + 1 (n > 1); (ii) the first
site is occupied; (iii) the(n+1)th site is vacant; (iv)i sites are connected to the origin; (v)
the number of the pair{0, 1} is j in n+1 sites; (vi) thenth site is vacant. By replacing the
‘vacant’ into ‘occupied’ in the condition (vi), we define a valuablebn,i,j . These variables
are connected toκn,j by the following equation:

κn,j =
n∑
i=1

(n+ 1− i)(an,i,j + bn,i,j ). (3.5)
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It is easy to obtain the different equation foran,i,j andbn,i,j ,

an,i,j = an−1,i,j + bn−1,i,j (3.6)

bn,i,j = an−1,i−1,j−1+ bn−1,i−1,j . (3.7)

We introduce the generating functions defined as

8(x, y, z) =
∞∑
n=2

∞∑
i=1

∞∑
j=1

an,i,j x
nyizj 9(x, y, z) =

∞∑
n=2

∞∑
i=1

∞∑
j=1

bn,i,j x
nyizj . (3.8)

Settinga2(1, 1) = 1 andb2(2, 1) = 1 as initial conditions, one can, after some algebra,
obtain8(x, y, z) and9(x, y, z) as

8(x, y, z) = x2yz

1− (1+ y)x + (1− z)yx2
(3.9)

9(x, y, z) = (1− (1− z)x)x2y2z

1− (1+ y)x + (1− z)yx2
. (3.10)

By combining8(x, y, z) and 9(x, y, z) with y = 1, we have the generating function
2(x, z) for κn,j as

2(x, z) = (3+ 2(z− 3)x − 4(z− 1)x2− (z− 1)2x3)x2z

(−1+ 2x + (z− 1)x2)2
. (3.11)

Finally, we expand2(x, z) and obtainκn,j for n > 1, i > 1 andj > 1 as

κn,j = j
(
n+ 1

2j

)
. (3.12)

Settingn = 1 in (3.12), we obtainκ1,1 = 1 and 0 ifj > 0. Thusκn,j also gives the correct
values in the case ofn = 1 (see equation (2.7)). We note that the shape of the denominator
is found, however, equation (3.4) includes the common factor to the numerator|An| in (3.3).

4. Conclusion and discussion

We derived the series expansion of the asymmetric directed percolation probability and
proved that all poles of the denominator in the series lie on the unit circle in the complex
q plane. Comparing the numerator with the denominator of the series, we cannot find
simple constructions in the numerator. This suggests that although we know the form of the
denominator, the inversion relation and symmetry relation would be insufficient to implicitly
yield the solution. Strictly speaking, we cannot conclude that the bond DP belongs to an
unsolvable class according to Guttmann and Enting’s criterion, because, we cannot prove
that poles become dense on the unit circle asn gets large. It seems to be correct for DP,
however its proof remains as an interesting future problem. Finally, we add some comments
about the properties ofHn(q) and the transfer matrix. Using the cofactor expansion for the
first column of the numerator in (3.3), we see that each is a Hessenberg matrix. Eigenvalues
of the Hessenberg matrix with sizen are obtained by an effective algorithm which requires
aboutn2 arithmetic operators (Johnson and Riess 1981, Lancaster and Tismenetsky 1985).
The percolation probabilityP(p, q) is invariant under the exchange ofp with q. Thus, the
following relations are established:

1

m!

dmHn(q)

dqm

∣∣∣∣
q=0

= 1

n!

dnHm(q)

dqn

∣∣∣∣
q=0

. (4.1)
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Since the characteristic polynomial of̃Mn, fM̃n
(q) is given by

fM̃n
(x) =

dn/2e∏
i=1

(x − qi)κn,i (4.2)

the function defined asgkn(q) = w′nM̃k
nc

0
n satisfies

(n+1)2n−2∑
i=0

ξ(q) gin(q) = 0 (4.3)

whereξ(q) is the coefficient ofxi in fM̃n
(q) (Lancaster and Tismenetsky 1985). By using

(4.3),gkn(q) is determined recursively. Thus we can observe the dependence ofP(p, q) on
the row number from (2.3).
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