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Abstract. We investigate numerically the percolation probability of the asymmetric directed-
bond percolation on the square lattice with two parameteend ¢ based on Guttmann and
Enting’s procedure (199®hys. Rev. Lett76 344). A series in the form of", H,(¢) p"

is derived by using the finite transfer-matrix method. The denominatdt,@f) is directly
calculated from the determinant of the transfer matrix and it leads to a proof that poles all lies
on the unit circle in the compley plane. Thesolvability of the bond directed percolation is
also discussed.

1. Introduction

The percolation problem (Broadbent and Hammersley 1957) has been associated with a
wide variety of critical phenomena. Especially directed percolation (DP) (Durrett 1988,
Baxter and Guttmann 1988, Jensen and Guttmann 1995, 1996, Jensen 1996) is a typical
statistical model which is nontranslationally invariant and is closely related to stochastic
cellular automata (Domany and Kinzel 1984, Kinzel 1985) and interacting particles systems
such as the contact process (Harris 1974, Durrett 1988, Konno 1994). Field-theoretical
arguments lead to the fact that the DP and Reggeon field theory belong to the same
universality class (Grassberger and de la Torre 1979, Cardy and Sugar 1980). It is believed
that almost stochastic models with a scalar parameter and a unique absorbing state belong
to DP universality class, and so, the DP is a kind of minimal model for the interacting
particle system (Janssen 1981, Grassberger 1982, Dickman 1993).

No exact solutions in DP models are found, however, although some critical exponents
have been estimated to rather high precision (Jensen and Guttmann 1995, 1996, Jensen
1996). It is well known that critical exponents of many exact solvable statistical models
can be represented as simple fractions. In the case of DP, long series expansions obtained
by Jensen and Guttmann suggest that the critical exponent of percolation probability of DP
is not a simple fraction.

The exact results for the series expansion of DP are very few, but, the following
regularities have been found recently. First, the confluent exponent of DP is very close
to 1 (Jensen and Guttmann 1995, 1996, Jensen 1996). Secondly, the coefficients of the
series are generally given as a finite series of simple combinational numbers (Baxter and
Guttmann 1988, Jensen and Guttmann 1995, 1996, Jensen 1996, Bou&tmeti996,
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Katori et al 1997, Katori and Inui 1997). These results suggest other hidden regularities
and exact results.

It is probably quite difficult to determine whether DP is solvable or not. To study the
solvability of DP in this paper, we use Guttmann and Enting’s proposal for solvability of a
statistical mechanical system (Guttmann and Enting 1996, Guttmann 1998, Tsukahara and
Inami 1998). They propose a powerful numerical procedure that indicates whether or not a
given system is solvable (in the sense of being expressible in termsfisiite functions)
and suggests the possibility of application to the DP problem. In this paper, we analyse the
series expansion of the asymmetric DP percolation probability by using the finite transfer-
matrix method (Bidaux and Fgacs 1984, ben-Avrahaet al 1991) and show several new
mathematical properties in the series.

2. Transfer-matrix method and series expansion

Consider a down-pointing triangular region in the square lattice withisi2g = {(x, y) €
Z?x +y =-even0 < y < k,—y < x < y}. In particular, we call a subset of sites
€ V, labelled by the same valug = k, ‘sites in thekth row’. We assume that each bond
between a sitéx, y) and one sitéx — 1, y + 1) (respectively(x + 1, y + 1)) is vacant with
probability p (respectivelyg) and occupied with 1 p (respectively - ¢). Let P*(p, )
be the probability that the origin is connected to at least one site ikttheow. The bond
percolation probability is defined aB(p, ¢) = lim;_., P*(p, ¢) and it can be represented
as the following polynomial:

o0 oo
P(pv Q) = Z cm,npmqn = Z Hn(q) Pn~ (21)
m,n=0 n=0
A short series expansion of the asymmetric bond DP has already been obtained by Katroi
et al (the list of coefficients is given in Katoet al (1997)). In the case op = ¢, the
series implies the percolation probability of ordinary DP and long series expansions have
been given by Jensen and Guttmann (Jensen and Guttmann 1995, 1996, Jensen 1996). The
best estimations for critical values and critical exponents of DP are given by these series.
The kernel of Guttmann and Enting’s proposal is in observing poleg,¢§) and the
shape of the numerator @f,(¢). To study the solvability of DP by Guttman and Enting’s
proposal, we first have to find the procedure for derivitigq). We stress that we cannot
obtain H, (¢) by only extrapolating a finite-series expansion.
Consider a cluster includingsites in thekth row connected to the origin. If these sites
are disconnected from every site in tfle+ 1)th row then at least2bonds between the
kth row and the(k + 1)th row are vacant. Therefore the order of the probability of a finite
cluster which is composed ofsites connected to the origin, with respectpg is not less
thans. It implies thatH, (¢) cannot be dependent on the percolation probabilities of clusters
including s(> n) sites in some row. In other words, the maximum distance between sites in
the same row which are located in the finite cluster contributing,t@;) is not greater than
n. By considering this restriction and translation invariant, we find #igly) is calculated
by the finite transfer-matrix method. A configuration of sites in Atte row is represented
as a list{o}* = {o_t, 0_r42, ..., or}¥, where if the site(/, k) is connected (disconnected)
to the origin theno; = 1(0), respectively. We write simply a configuration as an integer
i =1 oo utz2. In order to express the propagation of the percolation in a strip with
n sites in width, we introduce a transfer matiix(p, ¢). The transition probability from a
configurationj to j’ is given by an element in thgth row, the jth column ofLL,(p, ¢) (a
detailed definition is given in Bidaux and Fyarcs (1984) and ben-Avrahaet al (1991)).
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For example, the transfer matrik(p, ¢) for the set of configuratiof00, 01, 10, 11} is
given by using translation symmetry and equatja@} and {01} as

1 pq p?q?
Lp,¢)=| 0 gqd-p+A—q@p ¢*Q—p)p+gpL—gqp) |. (2.2)
0 Q-9 -p) qg(l-p)L—gqp)

We note that the above matrix is not a stochastic matrix, and so, the summation over
the column of matrix is not always 1. Using the translation symmetry, we write the set of
probability P’f.j(p, q) of finding the system in the stafg< 2") within the strip withn sites
in width asvt = (P} (p,q), P 1(p.q), ... Pi»(p.q))" where T denotes the transpose.
Then the propagation of cluster is represente@d‘d$ = M - v with the initial statev? =
(0,1,...,0,0). Letw, be a vector((pg)®, ..., (pq)¥, ..., (pg)**) defined bys; = the
number of ‘1’ in the statg. By introducingM,,, %, and 2 which are the matrix removed
from the first column and the first row fromy,,, and the vector removed from the first
element fromw, andv?, respectively, the percolation probability is given by

oo
P(p.q) =1—1, ) MP(p,q) 0+ O +1) (2.3)
k=0

whereO(n + 1) denotes a polynomial which is a linear combinationpd§’ (i + j > 2n)
and M? is defined as the unit matrix. If the right-hand side of (2.3) converges, it is written
as

P(p,q) =1—i,(I — My(p, @) 00+ O(n + 1) (2.4)

where! is the unit matrix and/ — Mn(p, ¢))~! means the inverse df— M,,(p, q). In the
case ofn = 2, W, is given by(pgq, (pq)?) and P(p, q) is

l1-g+
Pp.gy=1-PLE9ED) | o) (2.5)
1-9)
By a Taylor expansion neagr = 0, we obtain
Pp.)=1— 1 p+ L2+ 00p%. (2.6)

1-g¢g 1-9q)
Comparing (2.6) with (2.1), we obtaif;(¢) and Hx(g) as

Hi(q) = —1— 2.7)
-9
q
Hy(q) = : (2.8)
(1—gq)°
Series expansions of these functiond;(¢) = -1 —¢q¢ — ¢°> — ¢ — ¢* — --- and
Hy(q) = —1—q — 2q%> — 3¢° — 49* — - .- are the same as series expansions given by
Katori et al. Forn < 5, functionsH, (¢) obtained in the same way are
q(1+4%
H =—— 2.9
3(q) 1—q) (2.9)
q(1+q+3¢°+3¢°+ 4%
Ha(q) = 2.10
M 1- 31— ¢?) (2.10)
1 2 2 3 2 4 1 5 1 6 7
He(q) = — 1130 +9" #2007 + 25" + 1%+ 100" +297) ;445

1-92(1-4g%»3
From (2.7) and (2.11), one finds that (i) the numerator and denominator polynomial are
of equal degree and (ii) that all poles lie on the unit circle in the compleglane.
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These observations are also found in series expansions of the susceptibility of the Ising

model (Guttmann and Enting 1996, Hansehl 1987), self-avoiding polygon (Conway and
Guttmann 1996) and so on.

Equation (2.4) determinindd,(¢) is simple, however, it is difficult to calculate the
inverse matrix for large:. Therefore we try to findd,(g) for 6 < n < 8 satisfying the
above observations (i) and (ii) from series expansions up to 51 for maeh 8. The
degree of the polynomials is 115, 23 and the denominators &f,(¢) are(1—g)(1—¢?)°®,
1-—¢)"A+qg+qg®» and(1—q)8A+¢)°A+q +¢>° for n = 6,7, 8, respectively. The
coefficients of the numerator are summarized in table 1.

Table 1. Coefficients in the numerator d¥,(¢). The indexi denotes the exponent gf

i n==~6 n=7 n=28

0 0 0 0
1 -1 1 -1
2 -5 8 -12
3 -20 44 -90
4 —63 190 —518
5 —-135 621 —-2354
6 —200 1545 -8564
7 —-216 3006 —25407
8 —168 4637 —62506
9 -90 5722 —-129237
10 -27 5634 —226653
11 -4 4400 —-339384
12 2663 —435452
13 1216 —479519
14 388 —452640
15 80 —364981
16 8 —249557
17 —143151
18 —67691
19 —25769
20 —7589
21 —1633
22 —224
23 —13

3. Distribution of poles in the complex plane

In this section, we prove that all poles lie on the unit circle in the completane. We
represent each element df, P,f!j(p, q) as the following polynomial op:

n—sj

PYi(p.g) =) Cl(@p" (3.1)
m=0

By substituting this expression intof*! = M, - v}, the coefficient ofp™, Citt(q)
which is a function ofg, is given by a combination of some coefficienI#,,m,(q).
Thus the transition of a vector composed of coefficients Ie;ffj(p,q), k=

n

(CE1(@). CE (@), ... CEo(@). Cho(@). ... Chi . (@) can be expressed &s™ = M, cf
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with cS =(1,0,...,0". An advantage of this expression is that, can always be
represented as a lower triangular matrix by arranging the ordér ie decide the order of
the elemencﬁm(q) in ¢k by following two rules: (i) ifm < m’ then the coeﬁiciean’fm(q)
is located beforeC’,(¢); (i) if m =m’ andj < j’ then the coefficienc} , (¢) is located

before CX (q). We briefly explain the reason why we can transfoify into a lower

Jj\m
triangular matrix. We can divideZ, into blocks in which elements determine the transition
of coefflc:lentsC" (@) with the same index:. Because the exponent pfin the transfer
matrix M, is not Iess than zero, it is |mp055|ble to have a transition from the block with
m’ to the block withm (< m’). If j < j’ then the number of ‘1’ or the maximum distance
between ‘1’ in the statg is less than those of the state Thus it is impossible to have a
transition from the statg¢’ to the statej within the block; that is, the matri®Z, must be a
lower triangular matrix. As an example, we shad for ¢4 = (Cf 4(q), C5 o(q). C 1(g)T
which completely determinél,(q), '

3 q 0 0
M(q) = { l-gq q 0] (3.2)
1-29 q+4¢° ¢

To calculateH, (¢) by using the matrixM, we define a new vectaw,. We assume
that theith element ofcf is C"m(q) If m +5; = n then theith element ofw, is ¢
and otherwise is zero. We aIso define a new ma#jxgiven by replacing the first row
of I — M, by the vectorw’. By applying Cramers’ rules and Laplace’s theorem to (2.4),
H,(q) is simply expressed as

A,
Hy(q) = — 2l (3.3)

|\l — M,|
where|A,| denotes the determinant of the matiy. From (3.3) we find that the poles
of H,(q) are zero points of/ — M,|. Becausel — M, is the lower triangular matrix,
the determinant/ — M,| is given by the product of diagonal elements. For example, the
determinants of/ — M,| for n = 2, 3,4 are given by(1 — 9® 1—-¢)%1 - ¢%? and
(1 — ¢)191 — ¢?)10, respectively. Each diagonal element Mf, represents the transition
between the same configuration and it is generally expressetl wberea is the number
of a pair {1, 0} in the configuration, for example, the with respect to a configuration
j=19={1,0,0,1,1,0,...} is 2. Consequently, we can generally exprdss M,| in the
following form:

[n/2)
11— M, = []a-qg/) (3.4)
j=1
where [N denotes the smallest integer not less tidanFrom (3.4) we conclude thatil
poles lie on the unit circle in the complex g plane
We determinec, ; as a function oz andj. Leta,;; be the number of configurations
satisfying the following conditions: (i) the number of sitesnis- 1 (n > 1); (ii) the first
site is occupied; (iii) then + 1)th site is vacant; (iv) sites are connected to the origin; (v)
the number of the paif0, 1} is j in n + 1 sites; (vi) thenth site is vacant. By replacing the
‘vacant’ into ‘occupied’ in the condition (vi), we define a valualblg; ;. These variables
are connected te, ; by the following equation:

n

Knj =D (n+1—=i)(@nij+bui))- (3.5)
i=1
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It is easy to obtain the different equation fay; ; andb, ; ;,

Anij = Qn-1,i,j +bn_1,; (3.6)
buij=an-1-1j-1+bp_1i-1;. 3.7
We introduce the generating functions defined as
& o0 [e.¢] (e} o
D(x,y,2) = ZZZC{” ijx"y iz V(x,y,2)= Zzzbn,i,jxnylzj~ (3.8)
n=2 i=1 j= n=2 i=1 j=1

Settingaz(1,1) = 1 andb,(2,1) = 1 as initial conditions, one can, after some algebra,
obtain®(x, y, z) andW¥(x, y, z) as

x2yz
*ey.0= 1-A+y)x+1—z)yx? (3.9
Q- (A —-2x)x%y%z
B ey s Py s e (3.10)

By combining ®(x, y,z) and ¥(x, y,z) with y = 1, we have the generating function
O(x,z) fork, ; as

(B4 2(z=3)x —4(z — Dx?2 — (z — D%3)x%z

Ox,z) = 3.11
(9 (11 20+ (- D)2 541
Finally, we expandd(x, z) and obtairk, ; forn > 1,i > 1 andj > 1 as
(n+1
Kn,j = J< 2 ) (3.12)

Settingn = 1 in (3.12), we obtainy; =1 and 0 if j > 0. Thusk, ; also gives the correct
values in the case of = 1 (see equation (2.7)). We note that the shape of the denominator
is found, however, equation (3.4) includes the common factor to the numégdatadn (3.3).

4. Conclusion and discussion

We derived the series expansion of the asymmetric directed percolation probability and
proved that all poles of the denominator in the series lie on the unit circle in the complex
g plane. Comparing the numerator with the denominator of the series, we cannot find
simple constructions in the numerator. This suggests that although we know the form of the
denominator, the inversion relation and symmetry relation would be insufficient to implicitly
yield the solution. Strictly speaking, we cannot conclude that the bond DP belongs to an
unsolvable class according to Guttmann and Enting’s criterion, because, we cannot prove
that poles become dense on the unit circle:agets large. It seems to be correct for DP,
however its proof remains as an interesting future problem. Finally, we add some comments
about the properties aff,(¢) and the transfer matrix. Using the cofactor expansion for the
first column of the numerator in (3.3), we see that each is a Hessenberg matrix. Eigenvalues
of the Hessenberg matrix with sizeare obtained by an effective algorithm which requires
aboutn? arithmetic operators (Johnson and Riess 1981, Lancaster and Tismenetsky 1985).
The percolation probability’ (p, ¢) is invariant under the exchange pfwith ¢. Thus, the
following relations are established:

1d"H(@| _ 1dH. @

= 4.1
m! dg" |,_o n! dg" (4.1)

=0
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Since the characteristic polynomial 8f,, fi1,(q) is given by

/2]
fi, @) =[] =g (4.2)
i=1
the function defined agt(q) = w/, M*? satisfies
(n+1)2-2 '
> E@ei@) =0 (4.3)
i=0

where&(g) is the coefficient of’ in fi1,(q) (Lancaster and Tismenetsky 1985). By using
(4.3), g¥(¢) is determined recursively. Thus we can observe the dependerneepof;) on
the row number from (2.3).
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